If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-32X-512=0
a = 1; b = -32; c = -512;
Δ = b2-4ac
Δ = -322-4·1·(-512)
Δ = 3072
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3072}=\sqrt{1024*3}=\sqrt{1024}*\sqrt{3}=32\sqrt{3}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-32)-32\sqrt{3}}{2*1}=\frac{32-32\sqrt{3}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-32)+32\sqrt{3}}{2*1}=\frac{32+32\sqrt{3}}{2} $
| -14=x^2-23 | | 4c=7c-18 | | 5p=60-4 | | a=2/0.88^2 | | 100-13p=12p | | 84-5a=7a | | 2g+63=11g | | 2h=42-5h | | 4x^2-54=-5 | | 4x^2+21=48 | | −3.32=3.4+2.8c | | x^2/3+21=48 | | -4x^2-37=-137 | | -7n=20=82 | | 8q-8=54 | | –6q+5q=6 | | -3a=14-26 | | 3(2x-1)=2(x+1)-1 | | x^2+52=341 | | 7x+2(x+1)=28 | | |2x-4|-3x=9 | | F(x)=-2x2-3x+1 | | -6(-6x+5)=7(6x-4)+22 | | 17=x-3=3x | | -4(k+1)=-32 | | 3^4x+2=2^3x+1 | | 3x+3=5x-24 | | 3q+4=-11 | | 89-w=197 | | 100x+0.5x=20,100 | | 1/5+4h=1/3 | | 1.8=22+x/10+x |